abstract algebra - Proving distributive law in $\mathbb{Z}_{n}$ for equivalence classes - Mathematics Stack Exchange


equivalence classes defined $\overline{a} = \{ b \in \mathbb{z} : b \equiv \mod n \}$ .

i need prove distributive law in $\mathbb{z}_{n}$. so, if $\overline{a}$, $\overline{b}$, , $\overline{c}$ arbitrary elements in $\mathbb{z}_{n}$, $\overline{a}*(\overline{b}+\overline{c}) = \overline{a}*\overline{b}+\overline{a}*\overline{c}$.

i've seen examples proving distributive law real numbers , understood, i'm not sure if same proof works equivalence classes.

the definition of operations on $\mathbb{z}_n$ $$ \bar{a}+\bar{b}=\overline{a+b} \qquad \bar{a}\,\bar{b}=\overline{ab} $$ $$ \bar{a}(\bar{b}+\bar{c})= \bar{a}\overline{(b+c)}= \overline{a(b+c)}=\overline{ab+ac} $$ can finish?


Comments

Popular posts from this blog

analysis of two transistors ib,ic,ie? - Electrical Engineering Stack Exchange

Choosing and replace capacitors for audio amplifier - Electrical Engineering Stack Exchange

sql server 2008 r2 - LogWriter: Operating system error 1117 - Database Administrators Stack Exchange