Group cohomology with the coefficient $\frac{1}{n}\mathbb{Z}/\mathbb{Z}$ - Mathematics Stack Exchange
let $g$ finite group has $g$-module $\mathbb{q}/\mathbb{z}$.
note $\frac{1}{n}\mathbb{z}/\mathbb{z}$ $n$-torsion subgroup of $\mathbb{q}/\mathbb{z}$.
it purpose give map $h^{i}(g;\mathbb{q}/\mathbb{z})$ $h^{i}(g;\frac{1}{n}\mathbb{z}/\mathbb{z})$.
as singular cohomology coefficients, attempt use tensor product $\otimes\frac{1}{n}\mathbb{z}/\mathbb{z}$.
however not sure right method it.
thank time , effort.
Comments
Post a Comment