abstract algebra - Proving distributive law in $\mathbb{Z}_{n}$ for equivalence classes - Mathematics Stack Exchange
equivalence classes defined $\overline{a} = \{ b \in \mathbb{z} : b \equiv \mod n \}$ .
i need prove distributive law in $\mathbb{z}_{n}$. so, if $\overline{a}$, $\overline{b}$, , $\overline{c}$ arbitrary elements in $\mathbb{z}_{n}$, $\overline{a}*(\overline{b}+\overline{c}) = \overline{a}*\overline{b}+\overline{a}*\overline{c}$.
i've seen examples proving distributive law real numbers , understood, i'm not sure if same proof works equivalence classes.
the definition of operations on $\mathbb{z}_n$ $$ \bar{a}+\bar{b}=\overline{a+b} \qquad \bar{a}\,\bar{b}=\overline{ab} $$ $$ \bar{a}(\bar{b}+\bar{c})= \bar{a}\overline{(b+c)}= \overline{a(b+c)}=\overline{ab+ac} $$ can finish?
Comments
Post a Comment